Connect with us

Hi, what are you looking for?

News

A ‘Black Hole Laser’ Could Finally Shine a Light on Elusive Hawking Radiation

Scientists are getting closer to being able to spot Hawking radiation – that elusive thermal radiation thought to be produced by a black hole’s event horizon. Just understanding the concept of this radiation is tricky though, let alone finding it.

 

A new proposal suggests creating a special kind of quantum circuit to act as a ‘black hole laser’, essentially simulating some of the properties of a black hole. As with previous studies, the idea is that experts can observe and study Hawking radiation without actually having to look at any real black holes.

The basic principle is relatively straightforward. Black holes are objects that warp spacetime so much, not even a wave of light can escape. Swap spacetime for some other material (such as water) and make it flow quickly enough so that waves passing through are too slow to escape, and you’ve got yourself a fairly rudimentary model.

Advertisement. Scroll to continue reading.

Many examples can also include a ‘white hole’ equivalent – a kind of backwards black hole where waves can only escape, but can’t enter.

In this newest attempt to design one, researchers propose using a material with a structure not found in nature, one engineered so the particles within it can move faster than the light that passes through.

soliton laserAn illustration of the black hole laser in the circuit. (Katayama, Scientific Reports, 2021)

“The metamaterial element makes it possible for Hawking radiation to travel back and forth between horizons,” says physicist Haruna Katayama from Hiroshima University in Japan.

The aim is to amplify the Hawking radiation enough for it to be measured, and to achieve this Katayama is also using the so-called Josephson effect – a phenomenon where a continuous flow of current is created that doesn’t require any voltage.

Advertisement. Scroll to continue reading.

 

With the use of the metamaterial and the aid of the Josephson effect, this proposal promises to go beyond previous attempts to theorize what a black hole laser could look like, even if actually putting one together has yet to be done.

Such a circuit could potentially produce what’s known as a soliton, the research suggests –  a localized and self-reinforcing waveform that’s able to hold its speed and shape until the system is broken down by external factors.

“Unlike previously proposed black hole lasers, our version has a black hole/white hole cavity formed within a single soliton, where Hawking radiation is emitted outside of the soliton so we can evaluate it,” says Katayama.

Advertisement. Scroll to continue reading.

Ultimately the system would allow a quantum correlation between two particles – one inside and one outside the event horizon – to be measured mathematically, without having to observe them both simultaneously.

And that is how Hawking radiation is thought to be produced, as entangled particle pairs. Its discovery would get us closer to a unified and circular theory of everything, tying together quantum mechanics and general relativity.

Challenges remain to make this black hole laser a reality, but if scientists are able to configure it correctly, it might not only enable us to observe Hawking radiation – it could give us the tools to control it too, opening up a whole host of new possibilities.

“In the future, we would like to develop this system for quantum communication between distinct spacetimes using Hawking radiation,” says Katayama.

Advertisement. Scroll to continue reading.

The research has been published in Scientific Reports.

 

Advertisement. Scroll to continue reading.
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

News

A new kind of chemotherapy derived from a molecule found in a Himalayan fungus has been revealed as a potent anti-cancer agent, and may...

Technology

Developed by Leonardo da Vinci, one of the most amazing engineers ever born, it is an example of a bridge that you can build...

News

You can’t see them from the surface, but they’re definitely there. Scientists have revealed the discovery of hundreds of ancient ceremonial sites, many of...

News

Greenhouse gas concentrations in the atmosphere reached record levels last year, the United Nations said Monday, in a stark warning as Britain’s Boris Johnson...

News

Your internal organs grow and change throughout your life, but rarely do they vanish without a trace. For baby octopuses, things are not so simple....

News

Almost 20 years after researchers first predicted electron quadruplets, evidence of their existence has been shown to occur in experimental setups, representing a brand...

News

Now, possibly more than ever before, engineers and scientists happen to be taking inspiration from nature when developing technology. This is especially true for...

News

Playing through the greenery and litter of a mini forest’s undergrowth for just one month may be enough to change a child’s immune system,...

News

It had been only designed to fly five occasions. But NASA’s helicopter on Mars, Resourcefulness, has completed 12 flights also it is not prepared...

Advertisement